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SUMMARY

Glidobactins are hybrid NRPS-PKS natural products
that function as irreversible proteasome inhibitors.
A variety of medium chain 2(E),4(E)-diene fatty acids
N-acylate the peptidolactam core and contribute
significantly to the potency of proteasome inhibition.
We have expressed the initiation NRPS module GlbF
(C-A-T) in Escherichia coli and observe soluble active
protein only on coexpression with the 8 kDa MbtH-
like protein, GlbE. Following adenylation and installa-
tion of Thr as a T-domain thioester, the starter
condensation domain utilizes fatty acyl-CoA donors
to acylate the Thr1 amino group and generate the
fatty acyl-Thr1-S-pantetheinyl-GlbF intermediate to
be used in subsequent chain elongation. Previously
proposed to bemediated via acyl carrier protein fatty
acid donors, direct utilization of fatty acyl-CoA
donors for N-acylation of T-domain tethered amino
acids is likely a common strategy for chain initiation
in NRPS-mediated lipopeptide biosynthesis.

INTRODUCTION

Syrbactins comprise a family of bacterial N-acylated cyclic dep-

sipeptides with a 12memberedmacrolactam ring that covalently

targets the active site of proteasomes (Groll et al., 2008). The

electrophilic functionality is an a,b-unsatured amide moiety

within the macrolactam scaffold that undergoes Michael addi-

tion by the N-terminal Thr1–OH active site nucleophile within

the proteasome (Figure 1). Two subfamilies within the syrbactins

are the syringolins produced by the plant pathogen Pseudo-

monas syringae B301D-R (Waspi et al., 1998) and the glidobac-

tins fromBurkholderia K481-B101 (Oka et al., 1988a) which differ

most dramatically in the substituentsN-acylating the peptidolac-

tam core.

The 12membered macrolactam is assembled by a nonriboso-

mal peptide synthase (NRPS) from a tripeptide X1-Lys2-X3

framework where X3 is Ala in glidobactins and Val in syringolins.

In each case, X3 is further elongated on a hybrid nonribosomal

peptide synthetase (NRPS)-polyketide synthase (PKS) assembly

line via a D2-enoyl group (thereby introducing the electrophile
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that captures the proteasome) arising from partial processing

of a malonyl unit by the PKS module (Amrein et al., 2004; Schel-

lenberg et al., 2007) (see Figure S1 available online). X1 is an N-

acylated Val1 in syringolins and an N-acylated Thr1 in glidobac-

tins. The N-acyl moieties are important determinants for potent

inhibition of the proteasome, and they differ in syringolins and gli-

dobactins. In syringolins, there is an additional Val0 attached to

Val1 as an N-ureido-Val0 while in glidobactin Thr1 is N-acylated

by medium chain fatty acid monomers. We recently described

how the unusual ureido linkage is fashioned by a NRPS module

in syringolin assembly (Imker et al., 2009) and now have turned to

understanding the parallel step in glidobactin assembly.

Our attention in this work is on the N-acylation of Thr1 in glido-

bactin scaffolds by dienoic acids, predominantly 2(E),4(E)-do-

decadienoic acid. Bioinformatic analysis indicated that the trido-

main NRPS GlbF harbors an N-terminal ‘‘starter’’ condensation

(C) domain suggesting a direct function for this protein in initia-

tion of glidobactin biosynthesis (Figure 2). Although starter C

domains have been repeatedly proposed to catalyzeN-acylation

in peptide natural products (Baltz et al., 2005; Rausch et al.,

2007), in vitro characterization has been lacking. We demon-

strate that the starter C domain of the GlbF protein catalyzes

chain-initiating N-acylation of the Thr1-S-pantetheinyl-GlbF

intermediate with fatty acyl-CoAs as cosubstrates without

involvement of an in trans ACP.

RESULTS

GlbF as a Stand-Alone Tridomain C-A-T Module
Predicted to Carry Out Glidobactin Chain Initiation:
Heterologous Protein Production
To evaluate the 118 kDa GlbF as the putative glidobactin biosyn-

thesis chain initiation module, the 3252 bp Burkholderia K481-

B101 glbF gene was subcloned into various vectors for expres-

sion in E. coli as His6-tagged constructs. No protein expression

was detected despite variations in tag location, IPTG-induced

expression, or growth temperature. We noted the presence of

the predicted 8 kDa orf glbE, encoded just upstream of glbF

(Figure 2). GlbE is a member of the MbtH family, with the found-

ing member MbtH encoded in the mycobactin siderophore

biosynthetic pathway. We recently reported that, during charac-

terization of vicibactin biosynthesis, it was optimal to coexpress

the MbtH homolog VbsG with the NRPS VbsS, and the VbsGS

complex coeluted during purification (Heemstra et al., 2009).
083, October 29, 2010 ª2010 Elsevier Ltd All rights reserved 1077
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Figure 1. Chemical Structures of Glidobactin A and Syringolin A
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To that end, tandem coexpression of GlbE and GlbF led to

production of soluble GlbF (Figure S2). Notably, nickel affinity

purification of C-His6-tagged GlbF (120 kDa) resulted in copuri-

fication of the untagged GlbE (8 kDa). Likewise, nickel affinity

purification of N-His6-tagged GlbE resulted in copurification of

the untagged GlbF. Washing of the resin-bound C-His6 GlbF

for 16 hr with no salt, 2 M NaCl, 1% Triton X-100, 1 mM DTT,

or 1 mM ATP/1 mM Thr containing buffer was not sufficient to
Figure 2. Characterization of the Glidobactin Initiation Module, GlbF

(A) Partial glidobactin cluster.

(B) GlbF module organization and putative thioester product.

(C) Phylogenetic analysis of C domains including the GlbF starter C domain.

See also Figures S1 and S2.
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disrupt the GlbEF interaction (data not shown). Consequently,

the complex was further purified by gel filtration and the proteins

separated on 4%–15% gradient SDS-PAGE gel. The two bands

were excised and amino acid content was analyzed by ion

exchange following in-gel acid hydrolysis. This analysis showed

that the complex consisted of a 1.71:1 GlbE:GlbF stoichiometry

when GlbE was His6-tagged and 1.65:1 stoichoimetry when

GlbF was His6-tagged. With pure, soluble GlbEF complex

obtainable at yields of �10 mg/liter we could proceed to evalua-

tion of GlbF NRPS activity.

The Adenylation Domain of GlbF Activates and Loads
L-Thr as a Thioester on the Holo Form of the T Domain
Based on the domain organization of the two NRPS megasyn-

thetases in the glidobactin gene cluster, GlbF was themost likely

candidate for activation and incorporation of the first amino acid,

thereby initiating glidobactin biosynthesis. Additionally, the 10

amino acid Stachelhaus motif (DFWNIGMVHK) predicts Thr is

the substrate for the GlbF A domain (Stachelhaus et al., 1999;

Rausch et al., 2005). Reversible generation of amino acid adeny-

lates allows for quantification of activation by the classical

ATP-32PPi exchange assay. When this assay was carried out

with a panel of representative amino acids, GlbF showed strong

selectivity toward Thr and Ser substrates (Figure S3). Full kinetic

analysis further refined the specificity; while activation of Thr

showed prototypical adenylation parameters (kcat = 0.8 s-1,

KM = 0.7 mM, kcat/KM = 1.3 3 103 M-1 s-1), saturation kinetics

were not achievable for Ser at concentrations less than 10 mM

(kcat/KM �1 3 101 M-1 s-1) (Figure S3).

With confirmation that the GlbF A domain activates Thr to

generate Thr-AMP in the first reversible half reaction, we then

validated the expected second half reaction, transfer of the Thr

moiety to the HS-pantetheinyl arm of the T domain of GlbF.
lsevier Ltd All rights reserved
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Figure 3. HR LC-MS Spectra of Condensa-

tion Products Hydrolyzed from the GlbF T

Domain

(A) 2(E),4(E) dodecadienoyl-Thr Product.

(B) 2(E),4(E) decadienoyl-Thr Product.

See also Figures S3, S4, and S5.

Chemistry & Biology

N-Acylation during Glidobactin Biosynthesis
For this to occur, the apo form of GlbF must be posttranslation-

ally modified such that Ser1018 becomes phosphopantetheiny-

lated in the holo form. This was accomplished with purified GlbF

by use of the broad specificity PPTase Sfp using coenzyme A as

the cosubstrate (Quadri et al., 1998). Covalent loading of 14C-Thr

onto the holo T domain of GlbF occurs to 70%calculated stoichi-

ometry (Figure S4). 14C-Ser is also loaded to approximately the

same level as Thr, albeit more slowly which is likely a reflection

of suboptimal adenylation.

The Condensation Domain of GlbF Catalyzes Auto
N-Acylation of the Thr1-S-T Domain Using Fatty
Acyl-CoA Donors
The putative N-acylation activity of the GlbF starter C domain

requires access to activated fatty acid donors. Although ACPs

had been proposed to be the activating unit used in the biosyn-

thesis of otherN-acylated peptidyl natural products, no ACPwas

found in the glidobactin gene cluster (Schellenberg et al., 2007).

Furthermore, early feeding studies indicated that the unusual

2(E),4(E) diene fatty acids were intermediates shunted from

b-oxidation of long-chain fatty acids (Numata et al., 1988). This

observation suggested that the usual diene fatty acids were bio-

synthesized as CoA thioesters without involvement of dedicated

ACPs. Therefore, we synthesized the CoA thioesters of the C10

and C12 2(E),4(E) diene fatty acids as these acids were acces-

sible by commercial or synthetic methods and represented

both glidobactin A as the most prominent variant (C12 diene)

and glidobactin F as a minimally produced variant (C10 diene).

The CoA ester of 2(E),4(E) decadienoic acid was synthesized

using standard PyBOP coupling using commercial 2(E),4(E) dec-

adienoic acid (Kopp et al., 2008). In contrast, the CoA ester of

synthetically prepared 2(E),4(E) dodecadienoic acid was

prepared after activation with ethyl choroformate.

Condensation between fatty acyl-CoA donors and Thr1-S-

pantetheinyl-GlbF was tested by in situ generation of the holo
Chemistry & Biology 17, 1077–1083, October 29, 2010
GlbF protein followed by addition of the

fatty acyl-CoA and ATP. After the 2 hr,

the protein was precipitated in methanol

and the protein pellet subjected to base

hydrolysis to cleave the thioester-bound

product. After workup to remove protein

and concentrate the sample, the liberated

product was analyzed by HR LC-MS for

formation of the condensation product.

Both 2(E),4(E) dodecadienoyl-Thr and

2(E),4(E) decadienoyl-Thr were readily

detected with (M+H)+ ions of 270.1703

(expected m/z 270.1706) and 298.2013

(expected m/z 298.2019), respectively

(Figure 3). To confirm that the GlbF starter
condensation domain was responsible for acylation of the

T-domain-bound Thr, the conserved catalytic His common to

all condensation domains in the HHxxxDG motif (Stachelhaus

et al., 1998) was replaced with Ala by site-directed mutagenesis.

When assayed as above for condensation activity, no product

was detected from reaction with the H141A mutant protein

despite being active in adenylation and loading assays.

In the glidobactin family, six of the seven structurally character-

ized natural products vary only in the constitution of the N-acyl

fatty acid. This variability suggests a propensity towardCdomain

promiscuity and prompted us to test condensation with structur-

ally diverse acyl-CoA donors (Table 1; Figures S5 and S6). While

donors that deviated from the fatty acid family were not utilized

(e.g., benzoyl and isovaleryl CoAs), surprisingly, long-chain fatty

acid donorswere accepted, including palmitoyl- andoleoyl-CoA.

However, while the fully saturated dodecanoyl-CoA was not

a donor, the singly desaturated 2(E) dodecenoyl-CoA sufficed.

Short-chain fatty acyl-CoAs, either saturated or desaturated,

were not utilized. These results are consistent with semisynthetic

SARstudies conducted shortly after thediscoveryof glidobactins

(Oka et al., 1988b). Despite the ability of GlbF to activate and

load Ser (vide supra), 2(E),4(E) dodecadienoyl-Ser and 2(E),4(E)

decadienoyl-Ser were not observed. However, none of the glido-

bactin variants isolated contain Ser at X1 suggesting specificity at

this position is strict.

DISCUSSION

WhileN-acylation has been shown to be a critical feature for effi-

cacy in several cases, including the clinically relevant antibiotic

daptomycin (Huber et al., 1988; Baltz et al., 2005), little under-

standing has been acquired as to the timing and mechanism of

acylation. Several groups have noted the conspicuous presence

of an N-terminal condensation domain in the initiating module of

NRPS assembly lines of N-acylated natural product biosynthetic
ª2010 Elsevier Ltd All rights reserved 1079



Table 1. Acyl-CoA Donors Tested for Condensation to Thr1-S-Pantetheinyl-GlbF

CoA Donor Hydrolyzed Condensation Product Expected m/z (M+H)+ Found m/z (M+H)+ D ppma

2(E),4(E) decadienoyl-CoA 270.1706 270.1703 1.27

2(E),4(E) dodecadienoyl-CoA 298.2019 298.2013 0.81

2(E) dodecenoyl-CoA 300.2176 300.2168 �0.44

dodecanoyl-CoA 302.2332 None –

palmitoyl-CoA 358.2958 358.2962 �1.18

12-hydroxy-stearioyl-CoA 402.3220 None –

oleoyl-CoA 384.3115 384.3109 0.26

hexanoyl-CoA 218.1393 None –

isovaleryl-CoA 204.1237 None –

sinapioyl-CoA 326.1241 None –

benzoyl-CoA 224.0924 None –

See also Figures S5 and S6.
a Delta parts per million calculated as [(observed m/z � expected m/z)/expected m/z] 3 106.
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gene clusters (Baltz et al., 2005; Farnet et al., 2007; Rausch et al.,

2007). The presence of these domains in the initiation module

indicates that amide bond formation occurs between the acti-

vated fatty acyl donor and the aminoacyl1-S-pantetheinyl inter-

mediate before chain elongation and involvement of the next

downstream module. Accordingly, these domains were termed

‘‘starter’’ C domains by Rausch et al. during their careful phylo-

genetic analysis of condensation domain sub-types and include

the N-terminal condensation domains of daptomycin, entero-

bactin, and surfactin (Rausch et al., 2007). We carried out

a similar phylogenetic analysis including the GlbF sequence

and found that this condensation domain also clearly grouped

with other starter C domains (Figure 2).

Along with the proposed role of starter condensation domains

as the catalyst for N-acylation, the nature of the activated fatty

acid species has been the subject of consideration as well.

The presence of acyl-CoA ligases and ACPs in several lipopep-

tide natural product gene clusters, including CDA, daptomycin,

and A54145, led Baltz et al. to propose ACP-mediation as

a general strategy in lipopeptide biosynthesis (Baltz et al.,

2005). Indeed, the 2,3-epoxyhexanoyl moiety N-acylating the

CDA peptide core was shown to be synthesized on a dedicated

ACP encoded within the CDA gene cluster (Kopp et al., 2008).

Although no in vitro biochemical analysis has been published

directly showing condensation between the X1 amino acid and

ACP-activated fatty acids, this is likely the mechanism in those

systems. Notably, N-acylation of Ser-S-pantetheinyl-EntF with

2,3-dihydroxybenzoate in enterobactin biosynthesis occurs via

the ArCP (aryl-carrier protein) containing EntB (Gehring et al.,

1998), giving further credence to starter C domain interaction

with various carrier proteins. Steller et al. showed direct utiliza-

tion of fatty acyl-CoA donors inN-acylation of Glu1 during surfac-

tin biosynthesis; however, this is thought to be largely mediated

by the dual-function thioesterase/acyltransferase SrfD instead of

the SrfA starter C domain alone (Steller et al., 2004). This conclu-

sion was supported by the observed binding of myristoyl-CoA to

SrfD during structural characterization of SrfD by NMR spectros-

copy (Koglin et al., 2008).

All glidobactins are N-acylated by 2(E),4(E)-dienoic fatty acids

which vary in chain length and extent of oxidation. Long-chain

fatty acids are broken down by sequential removal of two carbon

units during b-oxidation, and examination of these intermediates

correspond to the novel fatty acids found in the glidobactin

natural products. Given that degradation by b-oxidation occurs

on CoA thioesters and no ACP was found in the glidobactin

gene cluster, we hypothesized that the fatty acids used in glido-

bactin biosynthesis were activated as CoA thioesters. Alterna-

tively, the CoA intermediate could be transferred to an in trans

ACP domain for interaction with the GlbF starter C domain;

however, our ability to locate remote ACPs was restricted by

the fact that Burkholderia K481-B101 has not been sequenced.

Therefore, we synthesized the CoA thioesters of 2(E),4(E)-

dodecadienoic acid (glidobactin A, major variant) and 2(E),4(E)-

decadienoic acid (glidobactin F, minor variant) to test for direct

condensation to Thr1-S-pantetheinyl-GlbF in an end point assay.

Reaction products were chemically hydrolyzed from the GlbF

T domain and analyzed by HR LC-MS. While no product was

detected in the enzyme-free control reactions or with the GlbF

H141A mutant, the wild-type enzyme produced both 2(E),4(E)
Chemistry & Biology 17, 1077–1
dodecadienoyl-Thr and 2(E),4(E) decadienoyl-Thr (Figure 3).

These results confirmed our hypothesis that the starter C domain

of GlbF utilizes CoA thioesters as activated fatty acid donors to

carry out stoichiometric self-modification of Thr1 without require-

ment for an in trans ACP.

When challenged with variant acyl-CoA donors, GlbF speci-

ficity was restricted to use of the singly desaturated 2(E) dodece-

noyl-CoA and the long-chain palmitoyl- and oleoyl-CoAs (Table

1; Figures S5 and S6). Nothing is known about the unusual

tailoring that gives rise to the 2(E),4(E) configuration, and it is

possible that 2(E) fatty acids undergo subsequent oxidation on

the assembly line to generate the diene natural products. Like-

wise, the significance of the palmitoyl and oleoyl donors is

unclear. As the two most common lipids in Burkholderia species

(Yabuuchi et al., 1992), palmitoyl- and oleoyl-CoA pools may be

substantial enough to generate novel acyl-Thr1-S-pantetheinyl-

GlbF intermediates. A detailed kinetic analysis would provide

insight into the true selectivity; however, self-acylation of GlbF

demands fast-reaction/single-turnover kinetics currently beyond

the scope of our investigation. We suspect the absence of long-

chain glidobactin variants is due to downstream editing of off-

pathway species. Despite this, feeding of methyl linolenate to

Burkholderia K481-B101 cultures resulted in isolation of a new

glidobactin variant (Numata and Oka, 1992). Efforts to explore

the promiscuity observed here ultimately requires probing

condensation between noncanonical acyl-Thr1-S-pantetheinyl-

GlbF intermediates with Lys2-S-pantetheinyl-GlbC in the next

downstream module.

One particularly intriguing aspect of this work is the necessity

for coexpression of the MbtH-like protein GlbE in order to obtain

overexpressed and soluble GlbF (Figure S2). Only �70 amino

acids in length, MbtH-like proteins are found in dozens, but not

all, NRPS gene clusters and have remained enigmatic from first

observation. Knockout studies indicate they are essential for

production of vicibactin, coelichelin, CDA, clorobiocin, and

pyoverdine natural products, yet no catalytic function can be

surmised (Carter et al., 2002; Drake et al., 2007; Lautru et al.,

2007; Wolpert et al., 2007). The crystal structure of the MbtH-

like protein from pyoverdine biosynthesis revealed a novel fold

consisting of a three-stranded antiparallel b sheet and two

a helices (Drake et al., 2007). That study also highlighted strictly

conserved hydrophobic residues, prompting a chaperone func-

tion to be proposed.

A recent study in our group on vicibactin biosynthesis found

that the MbtH-like protein VbsG was required for adenylation

activity of the NRPS VbsS (Heemstra et al., 2009). In that work,

it was optimal to coexpress VbsG and VbsS which then purified

as a complex. When initial efforts to obtain heterologous expres-

sion of the NRPS GlbF failed, coexpression of GlbE and GlbF

was pursued. Remarkably, direct cloning of the glbE-glbF

construct from Burkholderia K481-B101 resulted in overexpres-

sion of soluble GlbE and GlbF, without modification of the RBS

for glbF or intergenic spacing (D 5 bp). In this case, presumably

GlbE serves a chaperone function giving rise to the stable forma-

tion of the 118 kDaGlbF.We have not yet been able to determine

if GlbE is also required for optimal activity, as with the VbsG/

VbsS pair, because we were unable to separate the complex in

the absence of denaturing detergents. These results prompt

continued examination of MbtH-like proteins as activators,
083, October 29, 2010 ª2010 Elsevier Ltd All rights reserved 1081
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chaperones, or both in NRPS assembly lines. Regardless, we

find that coexpression of MbtH-like proteins is of practical rele-

vance and should be considered during heterologous expres-

sion of NRPS megasynthases.

SIGNIFICANCE

N-acylation is an important avenue for diversification of

peptide scaffolds and can have profound effects on SAR

profiles. Daptomycin, a potent antibiotic in clinical use

(as Cubicin) against Gram-positive pathogens including

MRSA, was discovered through exploration of fatty acid

variations in the constituents of the A21978C complex (Baltz

et al., 2005). Likewise, N-acylation of the glidobactin macro-

lactam corewas shown very early on to be critical for antimi-

crobial and antitumor function (Oka et al., 1988b). More

recently, a chimeric syrbactin was produced synthetically

by N-acylating the syringolin macrolactam core with a satu-

rated fatty acid resulting in one of the strongest proteasome

inhibitors reported to date (Clerc et al., 2009). Despite these

examples, biochemical characterization of this step in

natural product biosynthesis has remained largely unex-

plored. The work reported in this communication reveals

the necessary components required for N-acylation in the

glidobactin family of natural products. The single NRPS

module GlbF uses fatty acyl-CoA donors as cosubstrates

to initiate glidobactin biosynthesis. Furthermore, the impor-

tance of the MbtH-like protein GlbE in this work encourages

inclusion of MbtH-like proteins during future in vitro charac-

terization of other NRPS systems. Continued investigation

into N-acylation tailoring will undoubtedly yield more insight

for strategies to bioengineer natural product pathways.

EXPERIMENTAL PROCEDURES

Cloning and Purification of GlbEF

The bicistronic glbE-glbF insert was cloned from Burkholderia K481-B101

genomic DNA and ligated into His6-pET vectors for heterologous expression

in E. coli BL21 CodonPlus (Stratagene) using standard molecular biology tech-

niques and is detailed in the Supplemental Experimental Procedures. Large-

scale (2 L) production was carried out at 37�C with IPTG induction (0.5 mM)

at an OD600 of 0.4 followed by continued growth at 37�C for an additional

5 hr. Protein was isolated by nickel affinity chromatography as previously

described (Imker et al., 2009). Protein was visualized on a 4%–15% SDS-

PAGE gel, and fractions containing the GlbEF complex in R95% purity were

dialyzed against 250 mM NaCl buffered with 25 mM Tris-HCl (pH 7.9). The

protein was concentrated to 7–10 mg/ml as determined by Bradford Assay

using BSA as a standard and stored at �80�C until use.

Assay of Condensation Activity

Apo-GlbF (20 mM) was converted to holo-GlbF by incubation with 300 nM

Bacillus subtilis Sfp and 200 mM CoA for �30 min in a reaction that contained

5 mMMgCl2, 0.5 mM TCEP, 5 mM Thr, and 40 mM NaCl buffered with 50 mM

HEPES-HCl (pH 7.5). The reaction was initiated by addition of ATP and the

acyl-CoA to 5 and 1.25 mM final concentrations, respectively. The final reac-

tion volume was 250 ml. After 2 hr, 750 ml of cold methanol was added, and

the protein precipitate was pelleted at 10,000 3 g for 8 min. The supernatant

was removed, and the pellet washed twice with 250 ml cold methanol. The

pellet was dried under an air stream and then dissolved in 125 ml of 0.1 M

KOH followed by heating at 70�C for 10min. After cooling to room temperature

and neutralizationwith HCl, the protein was precipitated overnight at�20�Cby

addition of 1 ml methanol. The hydrolysate was centrifuged at 10,000 3 g for

15 min to remove precipitated protein, and the supernatant concentrated by
1082 Chemistry & Biology 17, 1077–1083, October 29, 2010 ª2010 E
SpeedVac. The residue was taken up in 100 ml acetonitrile and analyzed by

Dual-ESI on an Agilent 6520 QTOF-LCMS in positive ion mode.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one table and can be found with this article online at doi:

10.1016/j.chembiol.2010.08.007
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